Model¶
- class sofia_redux.toolkit.utilities.base.Model(*args, error=1, mask=None, covar=True, stats=True, robust=0, eps=0.01, maxiter=100, ignorenans=True, fit_kwargs=None, eval_kwargs=None)[source]¶
Bases:
object
Base model Class for fitting N-dimensional data
- Attributes:
- statsargparse.Namespace
- Contains the following statistics:
- samplesnumpy.ndarray (ndim, nsamples)
The samples used to fit the polynomial. samples[:-1] contain the independent variables for each dimension and samples[-1] contains the dependent variables. Note that all NaNs will have been stripped from the original input samples.
- ndataint
The number of samples used to fit the polynomial
- fitnumpy.array (nsamples,)
The fitted polynomial over the original sample points
- residualsnumpy.ndarray (nsamples,)
The residual of fit(data) - data
- sigmanumpy.ndarray (ncoeffs,)
The error of each polynomial coefficient (will only be calculated if a covariance matrix exists)
- dofint
Degrees of Freedom of the fit
- rmsfloat
Root Mean Square deviation of the fit
- chi2float
Chi-Squared
- rchi2float
Reduced Chi-Squared
- qfloat
Goodness of fit, or survival function. The probability (0->1) that one of the
samples
is greater thanchi2
away from thefit
.
Attributes Summary
Don't create the error unless asked for or already present
Methods Summary
__call__
(*independent_values[, dovar])Evaluate the model
evaluate
(samples[, dovar])Place holder
Place holder
Print parameters to stdout.
Print statistical information on the fit to stdout.
refit_mask
(mask[, covar])Place holder
reshape
(flattened_array[, copy])Attributes Documentation
- error¶
Don’t create the error unless asked for or already present
This is for the errors of the samples only
- state¶
Methods Documentation
- __call__(*independent_values, dovar=False)[source]¶
Evaluate the model
- Parameters:
- samplesn-tuple of array_like (shape)
n-features of independent variables.
- dovarbool, optional
If True return the variance of the fit in addition to the fit.
- Returns:
- fit, [variance]numpy.ndarray (shape), [numpy.ndarray (shape)]
The output fit and optionally, the variance.