robust_mask¶
- sofia_redux.toolkit.stats.stats.robust_mask(data, threshold, mask=None, axis=None, mask_data=False, cval=nan)[source]¶
Computes a mask derived from data Median Absolute Deviation (MAD).
Calculates a robust mask based on the input data and optional input mask. If \(threshold > 0\), the dataset is searched for outliers. Outliers are identified for point \(i\) if
\[\frac{|y_i - median[y]|}{MAD} > threshold\]where \(MAD\) is the Median Absolute Deviation defined as
\[MAD = 1.482 * median[|y_i - median[y]|]\]- Parameters:
- dataarray_like of float
The data on which to derive a robust mask.
- thresholdfloat
Threshold as described above.
- maskarray_like of bool, optional
If supplied, must be the same shape as
data. Any masked (False)datavalues will not be included in the \(MAD\) calculation. Additionally, masked elements will also be masked (False) in the output mask.- axisint, optional
Axis over which to calculate the \(MAD\). The default (
None) derives the \(MAD\) from the entire set ofdata.- mask_databool, optional
If
True, return a copy ofdatawith masked values replaced bycvalin addition to the output mask. The default isFalse. Note that the output type will- cvalint or float, optional
if
mask_datais set toTrue, masked values will be replaced bycval. The default isnumpy.nan.
- Returns: