gaussj¶
- sofia_redux.toolkit.fitting.polynomial.gaussj(alpha, beta, invert=False, preserve=True)[source]¶
Linear equation solution by Gauss-Jordan elimination and matrix inversion
- Parameters:
- alphaarray_like of float (N, N)
Coefficient array where N is the number of unknown variables to be solved, and therefore is the number of linear equations.
- betaarray_like of float (N, M)
Constant array containing the M right-hand side vectors
- invertbool, optional
If True, return A^-1 in addition to x.
- preservebool, optional
If True, creates copies the input alpha and beta arrays. Otherwise, alpha and beta will be modified inplace if they are already arrays of type
numpy.float64
.
- Returns:
- x [, inv_A)]numpy.ndarray [, numpy.ndarray]
The solution (x) to Ax=b (N, M). If
invert
is True, then inv_A (N, N) will also be returned.
Notes
- Created by:
Liyun Wang, GSFC/ARC, November 10, 1994
- Created Python version:
Dan Perera, USRA, April, 2019