rectifyorder¶
- sofia_redux.spectroscopy.rectifyorder.rectifyorder(image, ordermask, wavecal, spatcal, order, header=None, variance=None, mask=None, bitmask=None, x=None, y=None, dw=None, ds=None, badfrac=0.1, ybuffer=3, xbuffer=None, poly_order=3)[source]¶
Construct average spatial profiles for a single order
See
sofia_redux.spectroscopy.mkspatprof
andsofia_redux.spectroscopy.extspec
for algorithm description.- Parameters:
- imagenumpy.ndarray of float (nrow, ncol)
2-d image
- ordermasknumpy.ndarray of int (nrow, ncol)
Order number of each pixel
- wavecalnumpy.ndarray of float (nrow, ncol)
Wavelength of each pixel
- spatcalnumpy.ndarray of float (nrow, ncol)
Spatial coordinates of each pixel
- orderint
order to process
- headerfits.Header
Header to update with spectral WCS.
- variancenumpy.ndarray of float (nrow, ncol), optional
Variance to rectify parallel to the image.
- masknumpy.ndarray of bool (nrow, ncol), optional
Mask indicating good (True) and bad (False) pixels.
- bitmasknumpy.ndarray of int (nrow, ncol), optional
bit-set flags of each pixel.
- xnumpy.array, optional
(nrow, ncol) x-coordinates
- ynumpy.array, optional
(nrow, ncol) y-coordinates
- dwfloat, optional
Delta lambda based on the span of the order in pixels and wavelengths.
- dsfloat, optional
The spatial sampling of the resampling slit in arcseconds, typically given by slth_arc / slth_pix.
- xbufferint, optional
The number of pixels to ignore near the left and right of the slit.
- ybufferint, optional
The number of pixels to ignore near the top and bottom of the slit.
- badfracfloat, optional
If defines the maximum area of a pixel to be missing before that pixel should be considered bad. For example, a badfrac of 0.1 means that output flux of a pixel must be the sum of at least 0.9 input pixels.
- poly_orderint, optional
Polynomial order to use when converting wavecal and spatcal to rectified values.
- Returns:
- dict
image -> numpy.ndarray (ns, nw) wave -> numpy.ndarray (nw,) spatial -> numpy.ndarray (ns,) mask -> numpy.ndarray (ns, nw) bitmask -> numpy.ndarray (ns, nw) pixsum -> numpy.ndarray (ns, nw) variance -> numpy.ndarray (ns, nw) header -> fits.Header