CylindricalPerspectiveProjection¶
- class sofia_redux.scan.coordinate_systems.projection.cylindrical_perspective_projection.CylindricalPerspectiveProjection[source]¶
Bases:
CylindricalProjection
Create a cylindrical perspective projection.
The cylindrical perspective projection is constructed geometrically by projecting a sphere onto a tangent cylinder from the point on the equatorial plane opposite a given meridian. The attributes
mu
andla
(lambda) give the relative scaling of such a cylinder to the sphere, so that ifr
is the radius of the sphere:cylinder_radius = lambda * r
and a point of projection moves around a circle of radius
circle_radius = mu * r
in the equatorial plane of the sphere, depending on the projected meridian.
Methods Summary
edit_header
(header[, alt])Edit a FITS header with the projection information.
Return the FITS ID for the projection.
Return the full name of the projection.
get_offsets
(theta, phi[, offsets])Get the offsets given theta and phi.
get_phi_theta
(offset[, phi_theta])Return the phi (longitude) theta (latitude) coordinates.
parse_header
(header[, alt])Parse and apply a FITS header to the projection.
Methods Documentation
- edit_header(header, alt='')[source]¶
Edit a FITS header with the projection information.
- Parameters:
- headerfits.Header
The FITS header to edit.
- altstr, optional
The alternate FITS system.
- Returns:
- None
- get_offsets(theta, phi, offsets=None)[source]¶
Get the offsets given theta and phi.
Takes the theta (latitude) and phi (longitude) coordinates about the celestial pole and converts them to offsets from a reference position. For the cylindrical perspective projection, this is given as:
x = lambda * phi y = (mu + lambda) / (mu + cos(theta) * sin(theta))
- Parameters:
- thetaunits.Quantity
The theta angle.
- phiunits.Quantity
The phi angle.
- offsetsCoordinate2D, optional
An optional coordinate system in which to place the results.
- Returns:
- offsetsCoordinate2D
- get_phi_theta(offset, phi_theta=None)[source]¶
Return the phi (longitude) theta (latitude) coordinates.
The phi and theta coordinates refer to the inverse projection (deprojection) of projected offsets about the native pole. phi is the deprojected longitude, and theta is the deprojected latitude of the offsets.
For the cylindrical perspective projection, phi and theta are given by:
phi = x / lambda theta = arctan(eta, 1) + arcsin(eta * mu / sqrt(1 + eta^2))
where
eta = y / (mu + lambda)
- Parameters:
- offsetCoordinate2D
- phi_thetaSphericalCoordinates, optional
An optional output coordinate system in which to place the results.
- Returns:
- coordinatesSphericalCoordinates