CylindricalEqualAreaProjection¶
- class sofia_redux.scan.coordinate_systems.projection.cylindrical_equal_area_projection.CylindricalEqualAreaProjection[source]¶
Bases:
CylindricalProjection
Initialize a cylindrical equal-area projection.
The cylindrical equal-area projection maps spherical coordinates onto a stretched vertical cylinder, with meridians as equally spaced vertical lines, and parallels as horizontal lines. In this model, the stretch parameter is applied to the vertical axis, but is typically set to 1 (Lambert projection).
Methods Summary
edit_header
(header[, alt])Edit a FITS header with the projection information.
Return the FITS ID for the projection.
Return the full name of the projection.
get_offsets
(theta, phi[, offsets])Get the offsets given theta and phi.
get_phi_theta
(offset[, phi_theta])Return the phi (longitude) theta (latitude) coordinates.
parse_header
(header[, alt])Parse and apply a FITS header to the projection.
Methods Documentation
- edit_header(header, alt='')[source]¶
Edit a FITS header with the projection information.
- Parameters:
- headerfits.Header
The FITS header to edit.
- altstr, optional
The alternate FITS system.
- Returns:
- None
- get_offsets(theta, phi, offsets=None)[source]¶
Get the offsets given theta and phi.
Takes the theta (latitude) and phi (longitude) coordinates about the celestial pole and converts them to offsets from a reference position. For the cylindrical equal-area projection, this is given as:
x = phi y = stretch * sin(theta)
- Parameters:
- thetaunits.Quantity
The theta angle.
- phiunits.Quantity
The phi angle.
- offsetsCoordinate2D, optional
An optional coordinate system in which to place the results.
- Returns:
- offsetsCoordinate2D
- get_phi_theta(offset, phi_theta=None)[source]¶
Return the phi (longitude) theta (latitude) coordinates.
The phi and theta coordinates refer to the inverse projection (deprojection) of projected offsets about the native pole. phi is the deprojected longitude, and theta is the deprojected latitude of the offsets.
The cylindrical equal-area transform is very simple, of the form:
phi = x theta = arcsin(stretch * y)
- Parameters:
- offsetCoordinate2D
- phi_thetaSphericalCoordinates, optional
An optional output coordinate system in which to place the results.
- Returns:
- coordinatesSphericalCoordinates