medcomb¶
- sofia_redux.toolkit.stats.stats.medcomb(data, variance=None, mask=None, mad=False, axis=None, ignorenans=True, robust=0, returned=True, info=None)[source]¶
Combines a data set using median
Combines the data together using a median. An estimate of the error is given by computing the Median Absolute Deviation (MAD), where MAD = 1.482 * median(abs(x_i - x_med)), and then med_var = MAD^2 / N.
- Parameters:
- dataarray_like (shape)
- maskarray_like (shape), optional
An optional mask of the same shape as data identifying pixels to use in the combination (True=good, False=bad).
- variancearray_like (shape), optional
The variances of the data points with the same shape as data. If given a weighted median is performed.
- madbool, optional
If True, the Median Absolute Deviation (MAD^2) is returned instead of MAD^2 / N.
- axisint, optional
Specifies on which axis the mean operation should be performed.
- ignorenansbool, optional
If True, NaNs will be ignored in all calculations.
- robustfloat, optional
Set to the sigma threshold to throw bad data out. A data point is identified as an outlier if abs(x_i - x_med)/MAD > thresh where x_med is the median and MAD is the median absolute deviation defined as 1.482*median(abs(x_i - x_med)). Set to a non-integer/non-float or 0 to skip outlier rejection.
- returnedbool, optional
Flag indicating whether a tuple
(mean, meanvar)
should be returned as output (True), or just the mean (False). Default is True.- infodict, optional
- If supplied will be updated with:
‘mask’ -> output mask as modified by mask, NaNs, and robust
- Returns:
- median, [variance]float or numpy.ndarray
The median array and the optional variance array (MAD^2 / N) if
returned=True
.