logistic_curve¶
- sofia_redux.toolkit.resampling.logistic_curve(x, x0=0.0, k=1.0, a=0.0, c=1.0, q=1.0, b=1.0, v=1.0)[source]¶
Evaluate the generalized logistic function.
The generalized logistic function is given as:
\[f(x) = A + \frac{K - A} {\left( C + Q e^{-B(x - x_0)} \right)^{1/\nu}}\]Taken from Wikipedia contributors. (2020, June 11). Generalised logistic function. In Wikipedia, The Free Encyclopedia. Retrieved 23:51, July 6, 2020, from https://en.wikipedia.org/w/index.php?title=Generalised_logistic_function&oldid=961965809
- Parameters:
- xint or float or numpy.ndarray (shape)
The independent variable.
- x0int or float or numpy.ndarray (shape), optional
An offset applied to
x
.- kint or float or numpy.ndarray (shape), optional
The upper asymptote when
c
is one.- aint or float or numpy.ndarray (shape), optional
The lower asymptote.
- cint or float or numpy.ndarray (shape), optional
Typically takes a value of 1. Otherwise, the upper asymptote is a + ((k - a) / c^(1/v)).
- qint or float or numpy.ndarray (shape), optional
Related to the value of f(0).
- bint or float or numpy.ndarray (shape), optional
The growth rate.
- vint or float or numpy.ndarray (shape), optional
Must be greater than zero. Affects near which asymptote the maximum growth occurs.
- Returns:
- resultfloat or numpy.ndarray (shape)
The logistic function evaluated at
x
.