Interpolate¶
- class sofia_redux.toolkit.interpolate.interpolate.Interpolate(*args, method=None, cval=nan, cubic=None, ignorenans=True, error=None, mode='constant')[source]¶
Bases:
object
Fast interpolation on a regular grid
Much like scipy.interpolate.RegularGridInterpolator except better. Allows for cubic interpolation, omission of grid coordinates, and NaN handling.
- Parameters:
- argsarray_like or tuple of array_like
Either a single array whose coordinates will be determined by the features, or arrays of independent values followed by the dependent values.
- methodstr, optional
One of {‘linear’, ‘cubic’, ‘nearest’}
- cubicfloat, optional
Defines the value of “a” below for the fast approximation of the bicubic interpolator. a = -0.5 produces third order convergence with respect to the sampling interval. The convolution weights are defined as:
w(x) = (a+2)|x|^3 - (a+3)|x|^2 + 1 for |x|<=1, a|x|^3 - 5a|x|^2 + 8a|x| - 4a for 1<|x|<2, 0 otherwise
If method is None, setting cubic to a float will result in cubic interpolation using the above weightings in each dimension. The default value for
cubic
is -0.5.- modestr, optional
One of {‘nearest’, ‘reflect’, ‘mirror’, ‘wrap’, ‘constant’} which determines how edge conditions are handled when the interpolation kernel overlaps a border. Valid values and behaviours are as follows:
‘nearest’ (a a a a | a b c d | d d d d): The input is extended by replicating the last pixel
‘reflect’ (d c b a | a b c d | d c b a): The input is extended by reflecting about the edge of the last pixel.
‘mirror’ (d c b | a b c d | c b a): The input is extended by reflecting about the center of last pixel.
‘wrap’ (a b c d | a b c d | a b c d): The input is extended by wrapping around the opposite edge.
constant
(k k k k | a b c d | k k k k):The input is extended by filling all values beyond the edge with the same constant value defined by the
cval
parameter.
- cvalfloat, optional
The value used to fill values when
mode
is ‘constant’.- ignorenansbool, optional
If True, NaNs will be ignored in all calculations where possible.
Methods Summary
__call__
(*args[, method, cubic, mode])Interpolation at coordinates.
cubic_weights
(distances[, a])parse_arguments
(*args[, error])Parse initialization arguments.
set_values
(values)Reset the interpolation values only.
set_values_and_error
(values[, error])Set new interpolating values and error.
Methods Documentation
- __call__(*args, method=None, cubic=None, mode=None)[source]¶
Interpolation at coordinates.
- Parameters:
- argsarray_like or tuple of array_like
The coordinates to sample the gridded data at. The order of features follow the ‘xy’ rather than ‘ij’ convention. For example, arguments for two-dimensional data should be supplied in the order (x, y).
- methodstr
The method of interpolation to perform. One of {‘linear’, ‘cubic’, ‘nearest’}.
- parse_arguments(*args, error=None)[source]¶
Parse initialization arguments.
- Parameters:
- argsarray_like or tuple of array_like
Either a single array whose coordinates will be determined by the features, or arrays of independent values followed by the dependent values.
- errornumpy.ndarray, optional
The associated error values for the data.
- Returns:
- None