Overlay¶
- class sofia_redux.scan.source_models.maps.overlay.Overlay(data=None, blanking_value=None, dtype=None, shape=None, unit=None)[source]¶
Bases:
Image
Create an overlay of an underlying image.
The overlay object is an interface to a basis image. Multiple overlays can be applied to a single image allowing the data to be accessed and set as desired.
- Parameters:
- datanumpy.ndarray or FlaggedArray or Image or Overlay, optional
The image to overlay.
- blanking_valueint or float, optional
The value indicating that a data value is invalid.
- dtypetype, optional
The data type.
- shapetuple of int, optional
The shape of the data.
- unitastropy.units.Quantity, optional
The data unit.
Attributes Summary
Return the blanking value for the basis image.
Return the basis image data array.
Return the data type for the basis image data array.
Return the fixed indices of the basis image elements.
Return the associated data flags of the basis image.
Return the number of dimensions in the basis image.
Return the shape of the basis image data array.
Return the size of the basis image data array.
Return a boolean mask array of valid data elements in the basis image.
Methods Summary
copy
([with_contents])Return a copy of the overlay.
crop
(ranges)Crop the overlay to the required dimensions.
destroy
()Destroy the basis image.
set_basis
(basis)Set the basis image.
set_data
(data[, change_type])Set the data of the flagged array.
set_data_shape
(shape)Set the shape of the data array.
Attributes Documentation
- blanking_value¶
Return the blanking value for the basis image.
The blanking value is that which defines an invalid value.
- Returns:
- blanking_valueint or float or None
- data¶
Return the basis image data array.
- Returns:
- datanp.ndarray or None
- dtype¶
Return the data type for the basis image data array.
- Returns:
- dtypetype
- fixed_index¶
Return the fixed indices of the basis image elements.
The fixed indices are designed to be constant irrespective of any operations, deletions, etc and provide a reverse lookup onto the original data set.
- Returns:
- fixed_indexnumpy.ndarray (int)
- flag¶
Return the associated data flags of the basis image.
- Returns:
- flagsnumpy.ndarray (int)
- ndim¶
Return the number of dimensions in the basis image.
- Returns:
- int
- shape¶
Return the shape of the basis image data array.
- Returns:
- tuple (int)
- size¶
Return the size of the basis image data array.
- Returns:
- int
- valid¶
Return a boolean mask array of valid data elements in the basis image.
Valid elements are neither NaN, set to the blanking value, or flagged as the validating_flags.
- Returns:
- numpy.ndarray (bool)
A boolean mask where
True
indicates a valid element.
Methods Documentation
- copy(with_contents=True)[source]¶
Return a copy of the overlay.
- Parameters:
- with_contentsbool, optional
If
True
, paste the contents of this image onto the new one.
- Returns:
- Overlay
- crop(ranges)[source]¶
Crop the overlay to the required dimensions.
- Parameters:
- rangesnumpy.ndarray (int,)
The ranges to set crop the data to. Should be of shape (n_dimensions, 2) where ranges[0, 0] would give the minimum crop limit for the first dimension and ranges[0, 1] would give the maximum crop limit for the first dimension. In this case, the ‘first’ dimension is in numpy format. i.e., (y, x) for a 2-D array. Also note that the upper crop limit is not inclusive so a range of (0, 3) includes indices [0, 1, 2] but not 3.
- Returns:
- None
- set_basis(basis)[source]¶
Set the basis image.
- Parameters:
- basisImage or FitsData or FlaggedArray
- Returns:
- None