AstroData2D¶
- class sofia_redux.scan.source_models.astro_data_2d.AstroData2D(info, reduction=None)[source]¶
Bases:
AstroModel2D
Initialize an astronomical 2D model of the source data.
The AstroData2D is an abstract class that extends the
AstroModel2D
to operate on thesofia_redux.scan.source_models.map.observation_2d.Observaton2D
class.- Parameters:
- infosofia_redux.scan.info.info.Info
The Info object which should belong to this source model.
- reductionsofia_redux.scan.reduction.reduction.Reduction, optional
The reduction for which this source model should be applied.
Attributes Summary
Return the flagspace for this source model.
Return the masking flag for this source model.
Methods Summary
add_base
()Add a base to the source model data.
Clear the data.
Return the number of points in the source map.
create_from
(scans[, assign_scans])Initialize model from scans.
End map accumulation (typically scale by inverse weights).
filter
([allow_blanking])Apply filtering to the source.
Apply the filter beam correction.
filter_source
(filter_fwhm[, ...])Filter (smooth) the source above a given FWHM.
get_chi2
([robust])Get the Chi-squared statistic.
get_data
()Return the data for the source model.
Return the source map parallel executor.
Return the exposure map for the source model.
Return the filter scale.
Return the noise map for the source model.
Get the number of parallel operations for the source model.
Return the data significance map (signal-to-noise).
Return the weight map for the source model.
is_empty
()Return whether source map is empty.
level
([robust])Level the source model data.
mem_correct
(lg_multiplier)Apply maximum entropy correction to the map.
Disable parallel processing for the model.
process
()Process the source model.
Runs any final processing steps.
process_scan
(scan)Process a scan.
Reset the source filtering parameters.
set_executor
(executor)Set the parallel executor for the source.
set_filtering
(fwhm)Set the filtering FWHM.
set_parallel
(threads)Set the number of parallel operations for the source model.
smooth
()Smooth the source model.
smooth_to
(fwhm)Smooth the map using a Gaussian kernel of a given FWHM.
update_mask
([blanking_level, min_neighbors])Update the map mask based on significance levels and valid neighbors.
write_fits
(filename)Write the results to a FITS file.
Attributes Documentation
- FLAG_MASK = 2¶
- flagspace¶
Return the flagspace for this source model.
- Returns:
- ArrayFlags
- mask_flag¶
Return the masking flag for this source model.
- Returns:
- flagenum.Enum
Methods Documentation
- create_from(scans, assign_scans=True)[source]¶
Initialize model from scans.
Sets the model scans to those provided, and the source model for each scan as this. All integration gains are normalized to the first scan. If the first scan is non-sidereal, the system will be forced to an equatorial frame.
- Parameters:
- scanslist (sofia_redux.scan.scan.scan.Scan)
A list of scans from which to create the model.
- assign_scansbool, optional
If
True
, assign the scans to this source model. Otherwise, there will be no hard link between the scans and source model.
- Returns:
- None
- end_accumulation()[source]¶
End map accumulation (typically scale by inverse weights).
- Returns:
- None
- filter(allow_blanking=False)[source]¶
Apply filtering to the source.
- Parameters:
- allow_blankingbool, optional
If
True
, allow the blanking value to be determined from the ‘source.filter.blank’ configuration value. Otherwise, the filter blanking value will be set to NaN. The filter blanking level defines the range of values prior to filter smoothing that are permitted during the convolution. Any values > filter_level, or values < filter_level will be marked as invalid and not included.
- Returns:
- None
- abstract filter_source(filter_fwhm, filter_blanking=None, use_fft=False)[source]¶
Filter (smooth) the source above a given FWHM.
- Parameters:
- filter_fwhmastropy.units.Quantity
The filter FWHM scale to filter above.
- filter_blankingfloat, optional
- use_fftbool, optional
If
True
, use FFT filtering.
- Returns:
- None
- get_chi2(robust=False)[source]¶
Get the Chi-squared statistic.
- Parameters:
- robustbool, optional
If
True
, use the robust (median) method for determining variance. Otherwise, use a weighted mean.
- Returns:
- chi2float
- abstract get_data()[source]¶
Return the data for the source model.
- Returns:
- datasofia_redux.scan.source_models.maps.observation_2d.Observation2D
- get_executor()[source]¶
Return the source map parallel executor.
The executor is not currently implemented in any way.
- Returns:
- executorobject
- get_exposures()[source]¶
Return the exposure map for the source model.
- Returns:
- sofia_redux.scan.source_models.maps.exposure_map.ExposureMap
- get_filter_scale()[source]¶
Return the filter scale.
- Returns:
- filter_fwhmastropy.units.Quantity
The FWHM of the filter scale.
- get_noise()[source]¶
Return the noise map for the source model.
- Returns:
- noise_mapsofia_redux.scan.source_models.maps.noise_map.NoiseMap
- get_parallel()[source]¶
Get the number of parallel operations for the source model.
- Returns:
- threadsint
- get_significance()[source]¶
Return the data significance map (signal-to-noise).
- Returns:
- sofia_redux.scan.source_models.maps.significance_map.SignificanceMap
- get_weights()[source]¶
Return the weight map for the source model.
- Returns:
- weight_mapsofia_redux.scan.source_models.maps.weight_map.WeightMap
- level(robust=False)[source]¶
Level the source model data.
- Parameters:
- robustbool, optional
If
True
, use the robust (weighted median) method to level data. Otherwise, use a weighted mean.
- Returns:
- None
- abstract mem_correct(lg_multiplier)[source]¶
Apply maximum entropy correction to the map.
- Parameters:
- lg_multiplierfloat
The Lagrange multiplier (lambda).
- Returns:
- None
- process_scan(scan)[source]¶
Process a scan.
- Parameters:
- scansofia_redux.scan.scan.scan.Scan
- Returns:
- None
- set_executor(executor)[source]¶
Set the parallel executor for the source.
The executor is not currently implemented in any way.
- Parameters:
- executorobject
- Returns:
- None
- abstract set_filtering(fwhm)[source]¶
Set the filtering FWHM.
- Parameters:
- fwhmastropy.units.Quantity
- Returns:
- None
- set_parallel(threads)[source]¶
Set the number of parallel operations for the source model.
- Parameters:
- threadsint
- Returns:
- None
- abstract smooth_to(fwhm)[source]¶
Smooth the map using a Gaussian kernel of a given FWHM.
- Parameters:
- fwhmastropy.units.Quantity
- Returns:
- None
- abstract update_mask(blanking_level=nan, min_neighbors=None)[source]¶
Update the map mask based on significance levels and valid neighbors.
If a blanking level is supplied, significance values above or equal to the blanking level will be masked.
- Parameters:
- blanking_levelfloat, optional
The significance level used to mark the map. If not supplied, significance is irrelevant. See above for more details.
- min_neighborsint, optional
The minimum number of neighbors including the pixel itself. Therefore, the default of 2 excludes single pixels as this would require a single valid pixel and one valid neighbor.
- Returns:
- None