get_mean_frame_level¶
- sofia_redux.scan.integration.integration_numba_functions.get_mean_frame_level(frame_data, frame_weights, frame_valid, modeling_frames, sample_flags, channel_indices, start_frame=None, stop_frame=None, robust=False)[source]¶
Return the mean frame values for each channel.
- Parameters:
- frame_datanumpy.ndarray (float)
The frame data of shape (n_frames, all_channels).
- frame_weightsnumpy.ndarray (float)
- frame_validnumpy.ndarray (bool)
A boolean mask of shape (n_frames,) where
False
excludes a frame from all processing.- modeling_framesnumpy.ndarray (bool)
A boolean mask of shape (n_frames,) where
True
marks a flag as a modelling frame which will not be included when determining the mean.- sample_flagsnumpy.ndarray (int)
The frame data flag mask of shape (n_frames, all_channels) where any non-zero value excludes a sample from inclusion in the mean calculation.
- channel_indicesnumpy.ndarray (int)
The channel indices for which to calculate the mean of shape (n_channels,).
- start_frameint, optional
The start frame from which to calculate the mean. The default is the first frame (0).
- stop_frameint, optional
The stop frame (non-inclusive) at which to terminate the mean calculation. The default is the total number of frames (n_frames).
- robustbool, optional
If
True
, use a weighted median averaging calculation instead of a weighted mean.
- Returns:
- mean_value, mean_weightnumpy.ndarray (float), numpy.ndarray (float)
The mean frame values and weights for each channel.