ZenithalEqualAreaProjection¶
- class sofia_redux.scan.coordinate_systems.projection.zenithal_equal_area_projection.ZenithalEqualAreaProjection[source]¶
Bases:
ZenithalProjection
Initialize a zenithal equal-area projection.
The zenithal equal-area projection (also known as the Lambert azimuthal equal-area projection) maps points from a sphere to a disk, accurately representing area in all regions of the sphere, but not angles.
The forward projection is given by:
x = sqrt(2 * (1 - sin(theta))) * sin(phi) y = -sqrt(2 * (1 - sin(theta))) * cos(phi)
and the inverse transform (deprojection) is given by:
phi = arctan(x, -y) theta = pi/2 - (2 * asin(sqrt(x^2 + y^2)/2))
Methods Summary
Return the FITS ID for the projection.
Return the full name of the projection.
r
(theta)Return the radius of a point from the center of the projection.
theta_of_r
(r)Return theta (latitude) given a radius from the central point.
Methods Documentation
- classmethod r(theta)[source]¶
Return the radius of a point from the center of the projection.
For the zenithal equal-area projection, the radius of a point from the center of the projection, given the latitude (theta) is:
r = sqrt(2 * (1 - sin(theta)))
- Parameters:
- thetafloat or numpy.ndarray or units.Quantity
The latitude angle.
- Returns:
- runits.Quantity
The distance of the point from the central point.
- classmethod theta_of_r(r)[source]¶
Return theta (latitude) given a radius from the central point.
For the zenithal equal-area projection, the latitude (theta) of a point at a distance r from the center of the projection is given as:
theta = pi/2 - (2 * asin(r/2))
- Parameters:
- rfloat or numpy.ndarray or units.Quantity
The distance of the point from the central point.
- Returns:
- thetaunits.Quantity
The latitude angle.