HammerAitoffProjection¶
- class sofia_redux.scan.coordinate_systems.projection.hammer_aitoff_projection.HammerAitoffProjection[source]¶
Bases:
CylindricalProjection
Initialize a Hammer-Aitoff projection.
The Hammer-Aitoff projection is an equal-area cylindrical projection where the graticule takes the form of an ellipse, and is suitable for mapping on a small scale. It is a modified azimuthal projection where the central meridian is a straight line, half the length of the projected equator.
Methods Summary
gamma
(theta, phi)Return the gamma factor.
Return the FITS ID for the projection.
Return the full name of the projection.
get_offsets
(theta, phi[, offsets])Get the offsets given theta and phi.
get_phi_theta
(offset[, phi_theta])Return the phi (longitude) and theta (latitude) coordinates.
z2
(offset)Return the Z2 factor for an offset.
Methods Documentation
- classmethod gamma(theta, phi)[source]¶
Return the gamma factor.
Gamma is used during the forward projection and is given by:
gamma = sqrt(2 / (1 + cos(theta) + cos(phi/2)))
- Parameters:
- thetafloat or units.Quantity or numpy.ndarray
- phifloat or units.Quantity or numpy.ndarray
- Returns:
- float or numpy.ndarray
- classmethod get_offsets(theta, phi, offsets=None)[source]¶
Get the offsets given theta and phi.
Takes the theta (latitude) and phi (longitude) coordinates about the celestial pole and converts them to offsets from a reference position. For the Hammer projection, this is given by:
dx = 2 * cos(theta) * sin(phi/2) * gamma dy = sin(theta) * gamma
where
gamma = sqrt(2) / sqrt(1 + cos(theta) * cos(phi/2))
- Parameters:
- thetaunits.Quantity
The theta angle.
- phiunits.Quantity
The phi angle.
- offsetsCoordinate2D, optional
An optional coordinate system in which to place the results.
- Returns:
- offsetsCoordinate2D
- classmethod get_phi_theta(offset, phi_theta=None)[source]¶
Return the phi (longitude) and theta (latitude) coordinates.
The phi and theta coordinates refer to the inverse projection (deprojection) of projected offsets about the native pole. phi is the deprojected longitude, and theta is the deprojected latitude of the offsets. For the Hammer projection these are given as:
phi = 2 * arctan(z * x, 2(2z^2 - 1)) theta = arcsin(z * y)
where
z = sqrt(1 - (0.25x)^2 - (0.5y)^2)
- Parameters:
- offsetCoordinate2D
- phi_thetaSphericalCoordinates, optional
An optional output coordinate system in which to place the results.
- Returns:
- phi_thetaSphericalCoordinates