coadd_correlation¶
- sofia_redux.instruments.forcast.register.coadd_correlation(data, reference, header=None, variance=None, border=0, rot_angle=None, xydither=None, crpix=None, shift_order=None, rotation_order=1, upsample=100, get_offsets=False, missing=nan)[source]¶
Shift an image for coaddition using a correlation algorithm
- Parameters:
- datanumpy.ndarray
Data to be shifted (nrow, ncol)
- referencenumpy.ndarray
Data to be compared with (nrow, ncol)
- headerThe fits header of the new input data file, optional
- varianceNone or numpy.ndarray, optional
Propagate the provided variance (nrow, ncol)
- borderint, optional
Remove
border
pixels from the edge of the image before correlating- shift_orderint, optional
Order of interpolation for the shift. The shift order must be between 0 and 5, with a default of 3
- rotation_order: int, optional
Order of interpolaton for the rotation. The rotation order must be between 0 and 5, with a default of 3
- xyditherarray_like, optional
Initial x,y shift estimates. If not set, default is 0, 0
- crpixarray-like, optional
If provided, will be updated to match image shift_image [x, y]
- upsampleint, optional
Data will be registered to within 1 /
upsample
of a pixel- rot_anglefloat, optional
Indicates that the data image is rotated wrt the reference image by this amount. The data image (and variance if supplied) will be rotated clockwise by
rot_angle
degrees- get_offsetsbool, optional
Only return the (x, y) shift. Do not shift the data.
- missingfloat, optional
Value to represent missing data during shift
- Returns:
- numpy.ndarray, numpy.ndarray
The shifted image (nrow, ncol) The shifted variance (nrow, ncol)