clean¶
- sofia_redux.instruments.forcast.clean.clean(data, badmap=None, header=None, variance=None, propagate_nan=False, **kwargs)[source]¶
Replaces bad pixels in an image with approximate values
Interpolates over bad values. If the clean method used for jailbar pattern removal is FFT, it is applied here. If it is median, it is applied to the science in
stack
or to the calibrations ingetcal
.- Parameters:
- datanumpy.ndarray
Input data array (nimage, nrow, ncol)
- badmapnumpy.ndarray, optional
Bad pixel map (nrow, ncol) of bools. False = good pixel, True = bad pixel
- headerastropy.io.fits.header.Header
Input header, will be updated with HISTORY messages
- variancenumpy.ndarray, optional
Variance array (nimage, ncol, nrow) to update in parallel with the data array
- propagate_nanbool, optional
If set, bad pixels will be set to NaN instead of interpolated over.
- kwargs
Optional parameters to pass into mask interp. The most relevant default settings are maxap=6, order=3. See interpolate.maskinterp for further details
- Returns:
- numpy.ndarray, numpy.ndarray
Cleaned data array (nimage, ncol, nrow) Propagated variance array (nimage, ncol, nrow)