grig.grid package¶
Submodules¶
grig.grid.base_grid module¶
- class grig.grid.base_grid.BaseGrid(*grid, scale_factor=None, scale_offset=None, build_tree=False, tree_shape=None, dtype=None, **kwargs)[source]¶
Bases:
object- Attributes:
featuresReturn the number of grid dimensions.
regularReturn whether the grid contains feature aligned grid coordinates.
scale_factorReturn the scaling factor between actual and grid coordinates.
scale_offsetReturn the scaling offset between actual and grid coordinates.
shapeReturn the shape of the grid.
singularReturn whether the grid consists of only a single output coordinate.
sizeReturn the number of grid vertices.
tree_classReturn the relevant tree class for this grid.
Methods
__call__()Returns the grid.
get_class_for(thing)Return a Grid class specific to a given tree, resampler, or name.
get_class_for_name(name)Return a Grid class of the given name.
Return the relevant tree class for the grid.
rescale()Re-apply the previous scaling factors and offsets if removed.
reshape_data(data)Reshape data to the grid dimensions.
scale(factor, offset)Apply a scaling factor and offset to the grid coordinates.
set_indexer([shape, build_tree, build_type])Calculate the indexing mapping the grid coordinates to the tree.
unscale()Unscale the grid coordinates.
- property features¶
Return the number of grid dimensions.
- Returns:
- int
- static get_class_for(thing)[source]¶
Return a Grid class specific to a given tree, resampler, or name.
- Parameters:
- thingBaseTree or ResampleBase or str
Either a sub-class of a BaseTree, ResampleBase, or a string.
- Returns:
- BaseTree subclass
- static get_class_for_name(name)[source]¶
Return a Grid class of the given name.
- Parameters:
- namestr
The name of the grid.
- Returns:
- BaseGrid subclass
- property regular¶
Return whether the grid contains feature aligned grid coordinates.
- Returns:
- bool
- reshape_data(data)[source]¶
Reshape data to the grid dimensions.
Note that this will only reshape data if the grid is regular.
- Parameters:
- datanumpy.ndarray
Data of the shape (n_sets, grid.size) or (grid.size,).
- Returns:
- reshaped_datanumpy.ndarray
Data of shape (grid.shape).
- scale(factor, offset)[source]¶
Apply a scaling factor and offset to the grid coordinates.
- Parameters:
- factornumpy.ndarray
A scaling factor of shape (n_features,).
- offsetnumpy.ndarray
A scaling offset of shape (n_features,).
- Returns:
- None
- property scale_factor¶
Return the scaling factor between actual and grid coordinates.
- Returns:
- numpy.ndarray (float)
- property scale_offset¶
Return the scaling offset between actual and grid coordinates.
- Returns:
- numpy.ndarray (float)
- set_indexer(shape=None, build_tree=False, build_type='hood', **kwargs)[source]¶
Calculate the indexing mapping the grid coordinates to the tree.
- Parameters:
- shapetuple (int), optional
The shape of the grid. If not supplied, uses the maximum internal grid coordinates + 1 in each dimension.
- build_treebool, optional
If True, builds a neighborhood tree of the type build_type.
- build_typestr, optional
Must be one of {‘hood’, ‘balltree’, ‘all’, None}. Please see
BaseTreefor further details. The default type necessary for resampling is ‘hood’.- kwargsdict, optional
Optional keyword arguments passed into the tree initialization.
- Returns:
- None
- property shape¶
Return the shape of the grid.
- Returns:
- tuple (int)
- property singular¶
Return whether the grid consists of only a single output coordinate.
- Returns:
- bool
- property size¶
Return the number of grid vertices.
- Returns:
- int
- property tree_class¶
Return the relevant tree class for this grid.
- Returns:
- BaseTree subclass
grig.grid.kernel_grid module¶
- class grig.grid.kernel_grid.KernelGrid(*grid, scale_factor=None, scale_offset=None, build_tree=False, tree_shape=None, dtype=None, **kwargs)[source]¶
Bases:
BaseGridThe polynomial grid contains a KernelTree instead of the BaseTree object.
- Attributes:
featuresReturn the number of grid dimensions.
regularReturn whether the grid contains feature aligned grid coordinates.
scale_factorReturn the scaling factor between actual and grid coordinates.
scale_offsetReturn the scaling offset between actual and grid coordinates.
shapeReturn the shape of the grid.
singularReturn whether the grid consists of only a single output coordinate.
sizeReturn the number of grid vertices.
tree_classReturn the relevant tree class for this grid.
Methods
__call__()Returns the grid.
get_class_for(thing)Return a Grid class specific to a given tree, resampler, or name.
get_class_for_name(name)Return a Grid class of the given name.
get_tree_class()Return the relevant tree class for the grid.
rescale()Re-apply the previous scaling factors and offsets if removed.
reshape_data(data)Reshape data to the grid dimensions.
scale(factor, offset)Apply a scaling factor and offset to the grid coordinates.
set_indexer([shape, build_tree, build_type])Calculate the indexing mapping the grid coordinates to the tree.
unscale()Unscale the grid coordinates.
grig.grid.polynomial_grid module¶
- class grig.grid.polynomial_grid.PolynomialGrid(*grid, scale_factor=None, scale_offset=None, build_tree=False, tree_shape=None, dtype=None, **kwargs)[source]¶
Bases:
BaseGridThe polynomial grid contains a PolynomialTree instead of the BaseTree object.
- Attributes:
featuresReturn the number of grid dimensions.
regularReturn whether the grid contains feature aligned grid coordinates.
scale_factorReturn the scaling factor between actual and grid coordinates.
scale_offsetReturn the scaling offset between actual and grid coordinates.
shapeReturn the shape of the grid.
singularReturn whether the grid consists of only a single output coordinate.
sizeReturn the number of grid vertices.
tree_classReturn the relevant tree class for this grid.
Methods
__call__()Returns the grid.
get_class_for(thing)Return a Grid class specific to a given tree, resampler, or name.
get_class_for_name(name)Return a Grid class of the given name.
get_tree_class()Return the relevant tree class for the grid.
rescale()Re-apply the previous scaling factors and offsets if removed.
reshape_data(data)Reshape data to the grid dimensions.
scale(factor, offset)Apply a scaling factor and offset to the grid coordinates.
set_indexer([shape, build_tree, build_type])Calculate the indexing mapping the grid coordinates to the tree.
unscale()Unscale the grid coordinates.